2D NMR in structural studies of natural compounds

model study:

(O-antigen of Citrobacter freundii O22)
Sugar analyzer:

- **Rha** (2 eq, 6d)
- **Gal** (4 eq)
- **Man** (3 eq)
- **Unknown**

NMR 31P
- Empty

NMR 1H
- 4 anomers
- 2 -CH$_3$ (C6)
- -CH$_2$- (ring)
- HDO

NMR 13C BB
- 4 anomers
- no furanoses
- sugar ring
- substituted -CH(OH)-
- 2 -CH$_2$OH (C6)
- 2 -CH$_3$ (C6)
Experiments

<table>
<thead>
<tr>
<th>Question</th>
<th>1H 1D NMR</th>
<th>proton spectrum - general information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR experiment selection</td>
<td>1H HD diff</td>
<td>selective homonuclear decoupling - revealing of signals of neighboring protons</td>
</tr>
<tr>
<td>Acquisition</td>
<td>13C, 31P, ... BB</td>
<td>broad-band proton decoupled spectra - additional information, “fingerprint”, substitution positions</td>
</tr>
<tr>
<td>Interpretation</td>
<td>13C DEPT, APT, 15N INEPT</td>
<td>edited selective polarization transfer - revealing carbon and nitrogen protonation and sensitivity gain</td>
</tr>
<tr>
<td>Answer</td>
<td>13C Gated</td>
<td>undecoupled carbon spectrum - heteronuclear coupling constants measurement</td>
</tr>
<tr>
<td>1H NOE diff</td>
<td>nuclear Overhauser effect measurement - proton-proton spatial contacts</td>
<td></td>
</tr>
</tbody>
</table>

COSY, COSY-45	homonuclear spin correlation - proton spectrum assignment
COSY n-RCT	relayed coherence transfer in COSY - proton spectrum assignment
DQF COSY	double quantum filtered COSY - assignment of proximal signals
TOCSY	total homonuclear correlation - distinguishing of proton spin systems
NOESY, ROESY	homonuclear spatial correlation - revealing of residue sequence and conformation studies
DOSY	diffusion ordered spectroscopy - separation of a spectrum into component subspectra

1H, 13C HSQC	proton-carbon spin correlation - carbon spectrum assignment
1H, 31P HSQC	proton-phosphorus spin correlation - phosphate groups localization
1H, 13C HMBC, 1H, 15N HMBC	multiple-bond heteronuclear spin correlation - revealing modifier attachment pattern and residue sequence
HSQC Relay	relayed heteronuclear spin correlation - tracking neighboring carbons
HSQC-TOCSY	total heteronuclear correlation - distinguishing of residue spin systems
$\{^1H, ^1H\}$ COSY

$^3J_{H_1-H_2} < 3$ Hz for Gal
$\Rightarrow \alpha$-Gal

$J < 5$ Hz at H2

C_5 at 74.8 \Rightarrow not α-Gal

$J \sim 10$ Hz at H2

remaining δH_6

$\delta H_3, \delta H_6$
\{^{1}H,^{13}C\} HSQC

C5 in free sugar:
αGal 71.7
αMan 74.2
βMan 77.4

if unsubstituted, identified as α-3,6ddXylHex

from HMBC
H1/C3, H2/C3
from HMBC
H2/C4
from HMBC
H1/C5

ambiguous
abnormally low-field

αMan C4
C5 α
\{^{1}H, ^{13}C\} HSQC-TOCSY

H1/C2, H1/C3

see HSQC
by exclusion:

\[
\text{ddXylHex(1}\rightarrow?\text{)Man}
\]

\[
\text{Gal(1}\rightarrow?\text{)Man}
\]

\[
\text{Rha(1}\rightarrow3\text{)Gal}
\]

\[
\text{Man(1}\rightarrow4\text{)Rha}
\]
\[{^{1}H, ^{13}C} \text{HMBC} \]

- Find C5
- Find H5
- Find C3, C5
- H1/C5
- H1/C3
- H1/C4
- ddXylHex at C3
- Gal at C2
- H2/C1
- H2/C4
- H4/C3
- H4/C5
- H2/C3
- H4/C1
- H6/C4
- H6/C5
- H6/C4
- H6/C5
- H6/C4
<table>
<thead>
<tr>
<th></th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Rhap</td>
<td>103.3</td>
<td>71.9</td>
<td>70.6</td>
<td>83.0</td>
<td>69.4</td>
<td>18.6</td>
</tr>
<tr>
<td>α-3,6ddXylp</td>
<td>102.0</td>
<td>64.8</td>
<td>34.4</td>
<td>69.7</td>
<td>68.3</td>
<td>17.0</td>
</tr>
<tr>
<td>α-Galp</td>
<td>102.8</td>
<td>69.4</td>
<td>78.6</td>
<td>70.5</td>
<td>72.9</td>
<td>62.5</td>
</tr>
<tr>
<td>α-Manp</td>
<td>101.1</td>
<td>80.9</td>
<td>79.0</td>
<td>67.7</td>
<td>74.8</td>
<td>62.0</td>
</tr>
<tr>
<td>→4)α-Rhap</td>
<td>8.1</td>
<td>-0.2</td>
<td>-0.7</td>
<td>9.5</td>
<td>-0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>α-3,6ddXylp</td>
<td>9.3</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>→3)α-Galp</td>
<td>9.3</td>
<td>-0.2</td>
<td>8.2</td>
<td>-0.1</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>→2,3)α-Manp</td>
<td>5.8</td>
<td>9.4</td>
<td>7.5</td>
<td>-0.5</td>
<td>0.6</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

NMR 13C BB

![NMR spectrum](image)
Absolute configurations

<table>
<thead>
<tr>
<th>Residue Pair</th>
<th>Carbon</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man → 4αRha</td>
<td>C-4</td>
<td>DD 7.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Rha → 3αGal</td>
<td>C-3</td>
<td>DD 3.9</td>
<td>8.1</td>
</tr>
<tr>
<td>Gal → 2αMan</td>
<td>C-2</td>
<td>DD 9.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Abe → 3αMan</td>
<td>C-3</td>
<td>DD 7.4</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Gal is D (from enzymatic oxidation) =>
Rha is L =>
Man is D =>
3,6ddXyl is D (=Abequose)

Elucidated repeating unit

\[\alpha-D-Galp(1\rightarrow3)\alpha-D-Manp(1\rightarrow4)\alpha-L-Rhap(1\rightarrow) \]
The C13H spectrum of polysaccharide demonstrated a regular structure. It contained signals for four sugar residues, including those for four anomic carbons at 103.3, 102.8, 101.9 and 101.1, two unsubstttuted CH\textsubscript{2}OH groups, 15 oxygen-bearing sugar-ring carbons in the region 64-82, one CCH\textsubscript{3} group at 34.4 and two CH\textsubscript{2} groups at 18.6 and 17.0. Accordingly, the 1H NMR spectrum contained signals for four anomic protons at 5.34, 5.18, 5.10 and 5.06, signals of sugar-ring protons in region 3.5-4.2, one signal of a C-\textsubscript{CH}\textsubscript{2}C group at 2.00 and signals of two CH\textsubscript{2} groups at 1.34 and 1.19. As judged by the absence of signals within 82-88 region, all sugar residues are in pyranose form [1].

The sugar analysis of the polysaccharide revealed residues of Rha, Man and Gal residues in the ratio 1:1:1 and showed the presence of one more sugar, which has not been identified.

The 1H and 13C spectra of the polysaccharide were assigned using \{1H, 1H\} COSY, TOCSY, ROESY, \{1H, 13C\} HSQC, \{1H, 13C\} HSQC-TOCSY and \{1H, 13C\} HMBC experiments (Tables 1 and 2).

The C signals from C-1 to C-4 were assigned using the data of \{1H, 13C\} HSQC experiment. Due to the strong overlap of signals from C-1 to C-4, the assignment was performed using the data of \{1H, 13C\} HSQC-TOSY experiment, which contained the correlations of the following residues: Man-2/C-3 correlations at 72.9/78.6, 71.4/78.6, 71.0/78.6, 70.5/78.6; Gal-2/C-3 correlations at 72.0/78.6, 71.6/78.6; Rha-2/C-3 correlations at 72.0/78.6, 71.6/78.6; 3,6-deoxy-a-xylohexopyranoside [3].

The C signals from C-2 to C-6 of polysaccharide were assigned using the data of \{1H, 13C\} HSQC-experiment. The signals for protons from H-2 to H-4 were assigned using the COSY spectrum, which showed all correlations between neighboring protons in this residue. However, as judged by \{1H, 13C\} HSQC experiment, the signal for 3\textsubscript{d}6\textsubscript{d}Hex at 3.88 possessed a complete overlap with the signals of protons corresponding to C signals at 62.0 and 67.7. Due to this, the COSY experiment could be used for unambiguous assignment of the signal for 3\textsubscript{d}6\textsubscript{d}Hex.

The 1H and 13C NMR signals for Hex-II residue (Galp or Manp, accordingly to the sugar analysis, H-1 at 5.34) were assigned using the data of COSY, \{1H, 13C\} HSQC, and \{1H, 13C\} HMBC experiments. The signal for Hex-II H-2 was assigned basing on H-1/H-2 correlation at 4.04/5.11 in COSY spectrum. As there were no H-2/H-3 and H-3/H-4 correlations observed in COSY, the signals for H-3 and H-4 were assigned using the data of \{1H, 13C\} HSQC and \{1H, 13C\} HMBC experiments. Particularly, the HMBC spectrum demonstrated the intra-residue H-1/C-1=5.34/74.8, while chemical shifts for C-5 of unsubstituted a-Galp were distinguished basing on TOCSY spectrum that showed correlations of H-1/C-5 correlation at 69.7/4.12, and the H-5/H-6 correlation in COSY spectrum at 4.12/1.19 allowed to assign the signal for 3\textsubscript{d}6\textsubscript{d}Hex-2. The signals for C-5 and C-6 were assigned using the data of \{1H, 13C\} HSQC experiment.

The spin system of Rha\textsubscript{p} was distinguished basing on TOCSY spectrum that showed correlations of Rha-6/H-4 (1.34) with all the other protons of Rha. The Rha 1H signal assignment was completed by the COSY spectrum, which contained all correlations between neighboring protons in this residue. The assignment of Rha 13C signals was performed using the data of \{1H, 13C\} HSQC experiment and confirmed by \{1H, 13C\} HSQC-TOCSY, which revealed the correlations of Rha-2 with all the carbon residues of the chemical shift for Rha-3 (69.4) indicated that this residue was in a-anomeric configuration [2]. The significant downfield displacement of Rha-4 signal (from 73.5 to 83.0) determined the substitution position as C-4.

The 1H and 13C chemical shifts of 3\textsubscript{d}6\textsubscript{d}Hex appeared to be characteristic for the terminal 3\textsubscript{d}6\textsubscript{d}-hexO-containing a-xylohexopyranoside [3].

The absolute configurations of residues: Gal for Man, L for Rha and D for 3,6-deoxy-xylohexopyranoside. 3,6-deoxy-D-xylohexopyranose is called "abequose". Thus the structure of repeating unit was elucidated as follows [slide 11].
Tabular data

1H NMR data (ppm) for the O-specific polysaccharide of *Citrobacter* PCM 1555

<table>
<thead>
<tr>
<th></th>
<th>H-1</th>
<th>H-2</th>
<th>H-3</th>
<th>H-4</th>
<th>H-5</th>
<th>H-6a</th>
<th>H-6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Abe(1-)</td>
<td>5.11</td>
<td>4.04</td>
<td>2.00</td>
<td>3.88</td>
<td>4.12</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>2,3)-D-Manp(1)</td>
<td>5.34</td>
<td>4.02</td>
<td>4.05</td>
<td>3.87</td>
<td>~3.98</td>
<td>3.87</td>
<td>3.82</td>
</tr>
<tr>
<td>4)-L-Rhap(1)</td>
<td>5.06</td>
<td>4.07</td>
<td>~3.98</td>
<td>3.56</td>
<td>3.94</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>3)-D-Galp(1)</td>
<td>5.18</td>
<td>3.92</td>
<td>~3.95</td>
<td>4.07</td>
<td>4.10</td>
<td>3.75</td>
<td>3.69</td>
</tr>
</tbody>
</table>

13C NMR data (ppm) for the O-specific polysaccharide of *Citrobacter* PCM 1555

<table>
<thead>
<tr>
<th></th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Abe(1-)</td>
<td>102.0</td>
<td>64.8</td>
<td>34.4</td>
<td>69.7</td>
<td>68.3</td>
<td>17.0</td>
</tr>
<tr>
<td>2,3)-D-Manp(1)</td>
<td>101.1</td>
<td>81.0</td>
<td>79.0</td>
<td>67.7</td>
<td>74.8</td>
<td>62.0</td>
</tr>
<tr>
<td>4)-L-Rhap(1)</td>
<td>103.3</td>
<td>71.9</td>
<td>70.6</td>
<td>83.0</td>
<td>69.4</td>
<td>18.6</td>
</tr>
<tr>
<td>3)-D-Galp(1)</td>
<td>102.8</td>
<td>69.4</td>
<td>78.6</td>
<td>70.5</td>
<td>72.9</td>
<td>62.5</td>
</tr>
</tbody>
</table>

Referenced from “details”:

THIS WORK:
Katzenellenbogen E, Kocharova NA, Toukach FV, Górska S, Korzeniowska-Kowal A, Bogulska M, Gamian A, Knirel YA
“Structure of an abequose-containing O-polysaccharide from *Citrobacter freundii* O22 strain PCM 1555”, *Carbohydr Res*, 2009, **344**(13), 1724-1728.